skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Demchenko, Alexei V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Reported herein is a new reaction for glycosylation with thioglycosides in the presence of iron(III) chloride. Previously, FeCl3 was used for the activation of thioglycosides as a Lewis acid co-promoter paired with NIS. In the reported process, although 5.0 equiv of FeCl3 are needed to activate thioglycosides most efficiently, no additives were used, and the reactions with reactive glycosyl donors smoothly proceeded to completion in 1 h at 0 °C. This work showcases a new direction in developing glycosylation methods using greener and earth-abundant activators. 
    more » « less
  3. null (Ed.)
    Reported herein is a new method for a highly effective synthesis of β-glycosides from mannuronic acid donors equipped with the 3- O -picoloyl group. The stereocontrol of glycosylations was achieved by means of the H-bond-mediated aglycone delivery (HAD). The method was utilized for the synthesis of a tetrasaccharide linked via β-(1 → 3)-mannuronic linkages. We have also investigated 3,6-lactonized glycosyl donors that provided moderate to high β-manno stereoselectivity in glycosylations. A method to achieve complete α-manno stereoselectivity with mannuronic acid donors equipped with 3- O -benzoyl group is also reported. 
    more » « less
  4. null (Ed.)
    Presented herein is the discovery that bismuth( iii ) trifluoromethanesulfonate (Bi(OTf) 3 ) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf) 3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf) 3 catalyst. 
    more » « less
  5. null (Ed.)
    Described herein is the first example of glycosidation of thioglycosides in the presence of palladium( ii ) bromide. While the activation with PdBr 2 alone was proven feasible, higher yields and cleaner reactions were achieved when these glycosylations were performed in the presence of propargyl bromide as an additive. Preliminary mechanistic studies suggest that propargyl bromide assists the reaction by creating an ionizing complex, which accelerates the leaving group departure. A variety of thioglycoside donors in reactions with different glycosyl acceptors were investigated to determine the initial scope of this new reaction. Selective and chemoselective activation of thioglycosides over other leaving groups has also been explored. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    O -Picoloyl protecting groups at remote positions can affect the stereoselectivity of glycosylation by means of the H-bond-mediated aglycone delivery (HAD) pathway. A new practical method for the stereoselective synthesis of β-glycosides of mannosamine is reported. The presence of the O -picoloyl group at the C-3 position of a mannosamine donor can provide high or complete stereocontrol. The method was also utilized for the synthesis of a biologically relevant trisaccharide related to the capsular polysaccharide of Streptococcus pneumoniae serotype 4. Also reported herein is a method to achieve complete α-manno stereoselectivity with mannosamine donors equipped with 3- O -benzoyl group. 
    more » « less